首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5268篇
  免费   608篇
  国内免费   1366篇
化学   6023篇
晶体学   60篇
力学   56篇
综合类   54篇
数学   10篇
物理学   1039篇
  2024年   22篇
  2023年   94篇
  2022年   129篇
  2021年   227篇
  2020年   244篇
  2019年   233篇
  2018年   208篇
  2017年   208篇
  2016年   262篇
  2015年   230篇
  2014年   223篇
  2013年   475篇
  2012年   313篇
  2011年   318篇
  2010年   286篇
  2009年   343篇
  2008年   318篇
  2007年   346篇
  2006年   305篇
  2005年   320篇
  2004年   294篇
  2003年   234篇
  2002年   193篇
  2001年   163篇
  2000年   177篇
  1999年   164篇
  1998年   136篇
  1997年   115篇
  1996年   111篇
  1995年   99篇
  1994年   76篇
  1993年   83篇
  1992年   66篇
  1991年   42篇
  1990年   25篇
  1989年   15篇
  1988年   31篇
  1987年   16篇
  1986年   22篇
  1985年   21篇
  1984年   14篇
  1983年   5篇
  1982年   9篇
  1981年   11篇
  1980年   7篇
  1979年   7篇
  1977年   1篇
  1974年   1篇
排序方式: 共有7242条查询结果,搜索用时 15 毫秒
11.
煤焦油中酚类物质的有效分离,可实现其高附加值利用。针对酚类物质的分离,本研究采用聚乙烯吡咯烷酮(PVP)为吸附剂,研究了其对模型油中邻甲酚、间甲酚、对甲酚、1-萘酚和2-萘酚等的吸附性能。研究发现,PVP对酚类物质具有较大的吸附容量,其中对间甲酚、对甲酚、1-萘酚和2-萘酚的最大吸附量均可达1000 mg/g以上。同时发现,PVP上的Lewis碱性位点(C=O和C-N)可与酚羟基之间形成氢键作用,该作用的强度受酚类物质空间位阻影响。PVP具有一定的吸附选择性,在苯并呋喃或喹啉存在下,依然能够有效吸附2-萘酚。此外,使用过的PVP可再生并重复利用,同时实现酚的回收。可见,PVP是一种可用于分离煤焦油中酚类物质的优良吸附剂。  相似文献   
12.
采用基于第一性原理的密度泛函理论(DFT)和局域密度近似(LDA)方法,优化计算得到碳纳米管(CNT),硼原子取代碳原子及其吸附氖原子前后系统的几何结构,能量,电子能带和态密度。结果显示,碳纳米管的能带结构与石墨的层状几何结构相似,能量的变化只在kz=0和kz=0.5平面之间沿着c轴方向出现。B原子取代C原子使价带和导带分别分裂为两个和三个能带。对Ne原子的吸附使价带能量沿着c轴方向升高并导致Fermi面附近的态密度下降。Ne原子的吸附在谷位H最稳定,顶位A其次。C-C间σ键的弯曲使Ne原子吸附在桥位b1比桥位b2处更为稳定。Ne原子在管外的吸附均为放热过程,而管内则为吸热过程。结构分析表明Ne原子对C原子有排斥作用,对B原子却具有吸引作用。B原子取代C原子的位置略凸出于CNT的管壁之外,使Ne原子的吸附能增加。  相似文献   
13.
Microporous hypercross-linked conjugated quinonoid chromophores represent a novel class of amorphous polymers, synthesized by the reaction of anthracene with dimethoxy methane in the presence of FeCl3 catalyst. Their N2 adsorption isotherms confirm their microporous nature. Diffuse reflectance UV-Visible(DRS UV-Vis) spectroscopy confirms their matrix built with the conjugated quinonoids by their broad light absorption characteristics extending from 1000 nm to 200 nm with the absorbance maximum close to 400 nm. The catalyst cross-linked anthracene with ―CH2― bridges and subsequently dehydrogenating them to form quinonoids. Their Fourier transform infrared(FTIR) spectra showed their characteristic quinonoid vibrations between 1600 and 1700 cm-1. The synthesis of polymers was carried out at 30, 40, 50, 60, 70 and 80 ℃, but the quinonoid content of the polymer obtained at 80 ℃ was higher than that of the others. Their scanning electron microscopy(SEM) images showed microspheres of 1 to 5 μm size built with tiny particles. Their surfaces were not smooth. The polymer synthesized at 80 ℃ showed 5.1 wt% CO2 sorption at 25 ℃ and 0.1 MPa, but when it was recross-linked, the CO2 sorption increased to 8 wt%. Hence, hypercross-linked conjugated quinonoid chromophores of anthracene are good for sorption of CO2.  相似文献   
14.
15.
The contribution of rheological properties and viscoelasticity of the interfacial adsorbed layer to the emulsification mechanism of enzymatic modified sugar beet pectin (SBP) was studied. The component content of each enzymatic modified pectin was lower than that of untreated SBP. Protein and ferulic acid decreased from 5.52% and 1.08% to 0.54% and 0.13%, respectively, resulting in a decrease in thermal stability, apparent viscosity, and molecular weight (Mw). The dynamic interfacial rheological properties showed that the interfacial pressure and modulus (E) decreased significantly with the decrease of functional groups (especially proteins), which also led to the bimodal distribution of particle size. These results indicated that the superior emulsification property of SBP is mainly determined by proteins, followed by ferulic acid, and the existence of other functional groups also promotes the emulsification property of SBP.  相似文献   
16.
The discharge of diverse pollutants has led to a complex water environment and posed a huge health threat to humans and animals. Self-propelled micromotors have recently attracted considerable attention for efficient water remediation due to their strong localized mass transfer effect. However, a single functionalized component is difficult to tackle with multiple contaminants and requires to combine different decontamination effects together. Here, we introduced a multifunctional micromotor to implement the adsorption and degradation roles simultaneously by integrating the poly(aspartic acid) (PASP) adsorbent with a MnO2-based catalyst. The as-prepared micromotors are well propelled in contaminated waters by MnO2 catalyzing hydrogen peroxide. In addition, the catalytic ramsdellite MnO2(R-MnO2) inner layer is decorated with Fe2O3 nanoparticles to improve their catalytic performance, contributing to an excellent degradation ability with 90% tetracycline (TC) removal in 50 minutes by enhanced Fenton-like reactions. Combining the attractive adsorption capability of poly (aspartic acid) (PASP), the composite micromotors offer an efficient removal of heavy metal ions in short time. Moreover, the designed micromotors are able to simultaneously remove antibiotic and heavy metals in mixed contaminants circumstance just in single treatment. This multifunctional micromotor with distinctive decontamination ability exhibits a promising prospective in treating multiple pollutants in the future.  相似文献   
17.
A novel metal-doped metal–organic framework (MOF) was developed by incorporating salen–Mg into NH2–MIL-101(Cr) structure under ambient conditions. The Schiff base complex was successfully prepared by condensing salicylaldehyde with a free amino group and then coordinating metal ions. Such a structure can endow the sample with higher CO2 adsorption performance. At 0°C and 1 bar, the salen–Mg-modified sample achieves the maximum adsorption capacity of 2.18 mmol g−1 for CO2, which was 5.8% higher than the pristine salen–MOF under the same conditions. Notably, the Freundlich model indicates that the CO2 adsorption process of all samples conforms to reversible adsorption. However, the correlation coefficients (R2) of the Mg-doped sample are lower than that of the pristine sample. Besides, the CO2/N2 adsorption selectivity and isosteric heat also show a similar trend. These results indicate that the salen–Mg can enhance the interaction between the material and CO2 molecules.  相似文献   
18.
Emulsion polymerization of the three-monomer system butyl acrylate–styrene–methacrylic acid was performed in batch using a commercial maltodextrin derived from starch degradation as stabilizer. Stable latexes with narrow particle size distributions were obtained in all examined cases. A method was developed to analyze and quantify the partitioning of the maltodextrin between the continuous phase (supernatant) and the particle phase. Significant differences between the polysaccharides adsorbed onto particles with or without emulsion polymerization reaction were observed. The possible reactions of maltodextrin in presence of a radical initiator were studied in aqueous phase, thus confirming maltodextrin degradation. The formation of copolymers involving the original monomers and the stabilizer according to two different reactive pathways was also confirmed. In terms of adsorbed maltodextrin, two different contributions were observed: maltodextrin physically adsorbed and maltodextrin chemically grafted and/or physically incorporated into the polymer.  相似文献   
19.
A series of metalized C-PIM-M (M = Na+, Mg2+, Al3+, PIMs = polymers of intrinsic microporosity) materials were prepared from a carboxyl-functionalized PIM (C-PIMs). The C-PIM-Na exhibited a high CO2 adsorption capacity of 2.44 mmol/g and extreme low CH4 uptake of 0.28 mmol/g at 273 K and 101 kPa among three metallated PIMs. It showed remarkably high CO2/CH4 and CO2/N2 selectivities at both 273 and 293 K due to an advantageous pore-blocking effect of Na+ cation.  相似文献   
20.
Light hydrocarbons (C1–C3) are used as basic energy feedstocks and as commodity organic compounds for the production of many industrially necessary chemicals. Due to the nature of the raw materials and production processes, light hydrocarbons are generated as mixtures, but the high-purity single-component products are of vital importance to the petrochemical industry. Consequently, the separation of these C1–C3 products is a crucial industrial procedure that comprises a significant share of the total global energy consumption per year. As a complement to traditional separation methods (distillation, partial hydrogenation, etc.), adsorptive separations using porous solids have received widespread attention due to their lower energy costs and higher efficiency. Extensive research has been devoted to the use of porous materials such as zeolites and metal-organic frameworks (MOFs) as solid adsorbents for these key separations, owing to the high porosity, tunable pore structures, and unsaturated metal sites present in these materials. Recently, porous organic framework (POF) materials composed of organic building blocks linked by covalent bonds have also shown excellent properties in light hydrocarbon adsorption and separation, sparking interest in the use of these materials as adsorbents in separation processes. This Minireview summarizes the recent advances in the use of POFs for light hydrocarbon separations, including the separation of mixtures of methane/ethane, methane/propane, ethylene/ethane, acetylene/ethylene, and propylene/propane, while highlighting the relationships between the structural features of these materials and their separation performances. Finally, the difficulties, challenges, and opportunities associated with leveraging POFs for light hydrocarbon separations are discussed to conclude the review.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号